Composition and density analysis in OLED devices using micro-RBS

We have the world's first introduced a high spatial resolution RBS system. Accurate composition and density evaluation of small area can be realized by using High energy micro-ion-beam. The composition and density analysis of the IGZO layer in the flexible OLED device and Ir quantification in the emission layer are shown.

1. Introduction of New RBS

	Conventional RI	3S New RBS	
Available Information	Accurate composition, depth distribution / density (film thickness is required)		
Minimum spot diameter	2 mmφ	2 μmφ	
new feature		Micro analysis: µRBS High mass resolution - Highly sensitive detection light elements	

Conventional RBS: Spatial resolution 2 mm ϕ Applicable only for blanket/model sample

New RBS:

Spatial resolution $2 \mu m \phi$ Applicable also for actual devices

• It is possible to perform high-precision compositional analysis using the same method through all stages from material development to production.

2. Elemental composition and density analysis of the small area of IGZO layer in TFT

Sample : Flexible OLED device

Objective: Accurate composition and density analysis of IGZO layer in TFT

Conventional method : Composition can only be semi-quantified by Auger electron spectroscopy or TEM-EDX.

There is no method for density evaluation in micro region..

Composition and density quantification results

[atomic %]			density	
In	Ga	Zn	0	[g/cm3]
18.8	10.8	14.8	55.6	6.6

Advanced pretreatment + Measurement of microscopic area \rightarrow Accurate compositional analysis of micro areas is possible.

 Density evaluation of micro areas made possible for the first time.

3. High-sensitivity quantification of dopants in OLED emitting layers

Sample : Flexible OLED device

Objective : Accurate determination of Ir complex in the luminescence layer in each RGB pixel Conventional : SIMS is the only method sample comparison, accurate quantification difficult

Microion beam. (~2 $\mu m \phi$)

irradiated to each RGB pixel.

Ir quantification results for each pixel

pixel	Ir [atomic %]		
R	0.01		
G	0.09		
В	LOD		

 Establishment of a method for accurate determination of Ir in the luminescent laver.

Realization of high-precision composition and density analysis using the same method from raw materials to final products. \Rightarrow Direct comparison of OLED device characteristics and fabrication conditions is possible. Our new RBS contributes to accelerating the research and development and clarifying the essential causes.

900

Toray Research Center, Inc.

P02313表面科学第2研究室20210902-1