

COVALENT METROLOGY

CM000030169

Covalent Metrology, Max Junda

CdS Bandgap Mapping by Spectroscopic Ellipsometry

Authors

Max Junda, PhD

Reviewer

Avery Green, PhD

Published Date

September 1, 2023

Goal: Measurement of the spatial uniformity of the bandgap of a CdS thin film both before and after annealing.

Methods: Mapping spectroscopic ellipsometry is collected in a 36-point grid across the full sample area before and after annealing.

Results Summary:

- The average bandgap energy is found to increase after annealing with the following averages:
 - Before Annealing: 2.23 eV
 - After Annealing: 2.37 eV
- The bandgap spatial uniformity is decreased following annealing.
- The increased surface roughness following annealing suggests grain growth as a result of the annealing process.
- Raw results data is provided alongside this report in spreadsheet format.

Measurement Results

Mapped Bandgap Results

After Anneal

Mapped MSE Results

- The mean squared error function (MSE) is a relative measure of how well the model fits the measured data.
- It quantifies any mismatch between the model-generated and measured spectra such that lower MSE values correspond to better model fits.

Mapped Surface Roughness Results

- Generally, annealing is known to improve the crystallographic order in a material and promote the growth of larger grains.
- Increased surface roughness is consistent with larger grain size since larger individual grains protruding from the surface more.
- Additional characterization (such as XRD) would be required to confirm this grain size hypothesis with certainty.

After Anneal

Bandgap Distribution Statistics

7

Before Anneal

After Anneal

- + Layer # 2 = <u>Roughness</u> Roughness Thickness = <u>9.31 nm</u> (fit)
 + Layer # 1 = <u>CdS</u> CdS Thickness = <u>96.55 nm</u> (fit)
 Substrate = <u>Glass</u>
- For both the pre- and post-anneal measurements, the three-layer model shown above is fit to the measured ellipsometric spectra at each mapping location.
- The optical properties of the CdS film are freely fit at each location and are described as the sum of three Tauc-Lorentz and one Sellmeier oscillator.
- Tauc-Lorentz oscillators are typically used to describe amorphous or disordered semiconductors and feature a variable bandgap parameter which controls the photon energy where the optical absorption goes to zero the value of this parameter is what is mapped to determine spatial bandgap variation.
- The surface roughness is described as a Bruggeman effective medium approximation consisting of a 50/50% mix of CdS material and void.

Appendix 1

Appendix: Instrument

J. A. Woollam Co., Inc. Model RC2-DI Spectroscopic Ellipsometer

- Dual rotating compensator configuration multichannel spectroscopic ellipsometer
- Full spectrum data acquisition in:
 - Minimum: 0.3 s
 - Typical: 10 20s
- Automated mapping up to 300 mm substrates
- 190 to 1690 nm spectral range
- CompleteEase modeling software
- Variable angle transmission stage
- Measurement beam diameter:
 - Normal: 5 mm
 - Focused: 300 µm

							\frown	Jane Smith				
METROLOGY						ORDER PORTAL	DATA PORTAL	SOLUTION PORTAL	LEARNING		[] SIGN OUT	
	Order Demo, inc.	~			8		w Quote		can be from y	ution Por accesse our Orde dashboar	ed er	
	Order Status				Search			٩				
	<u>Order Number</u> ~	Accepted Date $\stackrel{(i)}{\checkmark}$	Samples Received \checkmark	Status ∽								
	CM000023633 1 samples, 2 techniques	2022-06-24	1	• Waiting for samples			epeat					
	CM000023632 1 samples, 2 techniques	2022-06-24	1	• Sample Received			epeat					
	CM000023631 1 samples, 2 techniques	2022-06-24	1	Sample Received			epeat					
	CM000021056 1 samples, 2 techniques	2022-01-25	1	• Executing			epeat					
	CM000020337 0 samples, 4 techniques	NA	0	• Waiting for samples			epeat					
	CM000020336 1 samples, 4 techniques	2022-01-03	1	• Waiting for samples			epeat					

Watch the Demo

- Interact with Images, PPTX Files, and EDX/EDS Data
- **Download & Save** analysis, measurements and results
- **Pre-built Analytical Tools** accelerate analytical routines and reporting
 - Line Edge Roughness (LER): interfacial roughness
 - Area Measurement: particle and grain size analysis
 - Line Profile: thin film thickness and multilayer measurements

Start Exploring at: solution.covalentmetrology.com

Thank You.

covalentmetrology.com