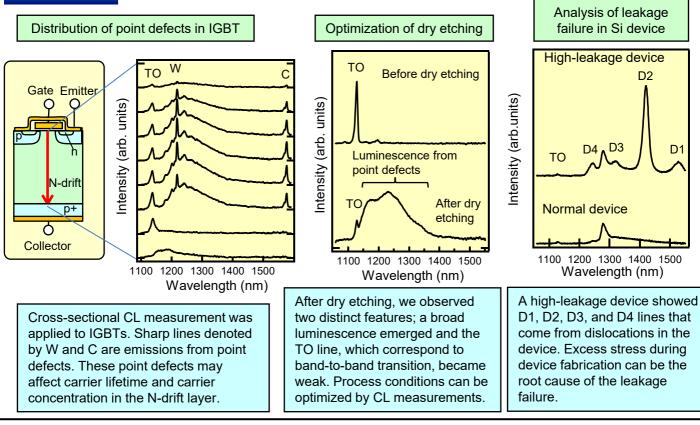
Evaluation of defects in Si-based power devices by cathodoluminescence (CL)

Wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) have been investigated for next-generation power devices. However, silicon (Si) is still the most important semiconductor. Failure analysis and process optimization by CL are presented.


1. Generation processes of defects in Si-based devices and influence on device characteristics

Types of defects	Dimension	Generation process	Influence on device characteristics	Methods
Point defects (interstitials, vacancies, their complexes, etc.)	0D	lon implantation, dry etching, mechanical process, etc.	Carrier lifetime, carrier concentration, surface leakage, cause of dislocation and stacking fault	Luminescence (PL, CL), ESR, DLTS, RBS channeling, positron annihilation, etc.
Dislocations and stacking faults	1D, 2D	Epitaxial growth, STI, ion implantation, silicide, mechanical process, etc.	Junction leakage, carrier concentration, breakdown voltage degradation	TEM, luminescence (PL, CL), wet etching, X-ray topography, etc.
Precipitations, bulk defects, etc.	3D	Thermal treatment of high oxygen concentration wafer etc.	Junction leakage, breakdown voltage degradation	Wet etching, luminescence (PL, CL), TEM, SIMS, etc.

2. Advantages of CL analysis for Si-based devices

- 1. Si wafer is nearly perfect crystal. Killer defects are often generated during device-fabrication.
- 2. Although Si is indirect transition material, many types of defect-related emissions have been reported.
- 3. SEM can be used for identification of measurement points. Local area in the devices can be easily evaluated.
- 4. Depth-resolved measurement can be easily achieved by changing acceleration voltage.

3. Examples

Toray Research Center, Inc.

P02268構造化学第1研究室20210510