
Attenuated Total Reflectance (ATR)
$99 Base price View My Quote RequestDigital Optical Microscopy (VH Microscope)

Optical microscopy is ubiquitous in diverse fields within academic research and commercial industries. It is an affordable, rapid analytical imaging technique used to visualize samples. While optical microscopes may be common, many instruments fall far short on performance when compared with the cutting-edge digital microscope systems available at Covalent.
- High spatial resolution
- Highly accurate and reproducible, in-situ, automated measurement of critical dimension
- Widest possible depth-of-field (without cross-sectioning) among direct imaging / microscopy techniques
- Rapid imaging and analysis easily adapted for high-throughput
- Multi-modal illumination controls for enhanced feature contrast
- Reduced spatial resolution compared to atomic force microscopy (AFM) / scanning probe microscopy (SPM), and some other optical profilometry methods
Technical Specifications:4>
Learn More:4>

Keyence VHX-6000
- Dynamic Microscope Tilt Range: -60° to 90° from vertical
- Magnification Range: 20x to 2000x
- Maximum Field of View 15.24 mm (lateral) x 11.40 mm (vertical) at 20x magnification
- Illumination Modes: customizable bright-field, dark-field, and mixed lighting
- High-precision, automated, in-situ dimensional analysis
Advanced optical microscopes generate images in the same way modern digital cameras do, by capturing the light reflected back from (or transmitted through) a sample under set illumination. However, unlike a simple camera, modern optical microscopes also include intrinsic lens systems and sophisticated illumination systems that facilitate high magnification and dynamic range images with micron-scale resolution.
Our systems additionally incorporate extended depth-of-field optics, with automated compositing and image-stitching technologies to process and integrate images captured across different focal planes and oversized lateral domains. This enables fully focused, high-resolution imaging across the entirety of the desired field of view, even spanning large height differences in the features of interest. Distinct illumination modes (including: bright-field, dark-field, and mixed lighting, polarized lighting, and directional lighting) can be acutely controlled within a high-precision automation system to enable thorough characterization of critical surface features which may not otherwise be observable. In addition, this system has the unique ability to tilt the microscope with respect to the sample for enhanced edge definition images.

Optical Microscopy and Profilometry Services

Datasheet: Covalent Keyence Instrument Overview

Laser Scanning Confocal Microscopy (LSCM)
Laser scanning confocal microscopy (LSCM) is a nondestructive technique which generates 2D and 3D images of a sample...

Chromatic Dispersion Profilometry (CWL)
Chromatic dispersion profilometry is a non-contact, nondestructive analytical technique used to measure surface topography. It is particularly well...

White Light Interferometry (WLI)
White light interferometry (WLI) is a nondestructive, non-contact, optical surface topography measurement which uses coherence scanning interferometry to...

Wide Area 3D Patterned Light Measurement (VR)
Wide Area 3D Patterned Light measurements encompass a class of optical profilometry techniques used to visualize the surface...

Atomic Force Microscopy (AFM)
AFM measures surface topography and certain material properties with sub-nm vertical resolution and atomic-level force sensitivity.

Scanning Electron Microscopy (SEM)
Scanning electron microscopy (SEM) is a surface imaging technique capable of achieving nm resolution on topographical features. Additionally,...