
Attenuated Total Reflectance (ATR)
$99 Base price View My Quote RequestX-ray Diffraction (XRD)

X-ray Diffraction (XRD) is a nondestructive analytical technique which can be used to measure both physical and chemical properties of crystalline powders, thin films, epitaxial films, and bulk solid materials.
At Covalent, we use the newest in XRD technology, utilizing a high-brilliance Rotating Anode Cu source, Hypix-3000 Hybrid Pixel Array detector, and a variety of high-resolution optics.
- Nondestructive
- Sensitivity to crystallographic structure
- Quantitatively measures crystalline phase and texture orientation
- Minimal sample preparation required
- XRD without a pair distribution function has limited capabilities when applied to amorphous materials
- Elemental composition of the samples should be known in advance
Technical Specifications:4>
Learn More:4>
X-ray diffraction results when an monochromatic, collimated X-Ray beam strikes a crystalline sample and the lattice spacings between atomic planes produce constructive interference with the incident beam at specified angles, in accordance with Bragg’s Law.
The XRD system scans over a range of diffraction angles, yielding diffraction peaks that can be correlated to distinct families of atomic planes in crystalline specimens. By analyzing the XRD peak pattern, one can: identify and quantify crystalline phases, calculate residual stress (macrostrain) in the material from measured lattice parameters, characterize the crystallite size and microstrain from peak broadening effects, and map the measured lattice parameters in reciprocal space to analyze pseudo-morphic growth of epitaxial films.
Additionally, advanced modeling can be performed from high-resolution XRD data to obtain layer composition and thickness information for epitaxial films, and rocking-curves procedures can be used to show the quality of the films.

Analysis of powder crystal structures of organic crystals...

Fast, flexible stress measurements

Reciprocal space mapping of epitaxial nanowires

Structure determination of BaTiO3 by PDF analysis

Operando measurement of Li ion battery positive electrode...

High-speed in-situ measurement of Al metal melting process

Identification of the crystal form of the active...

Measurement of microscopic regions using a high-speed 2-dimensional...

Application Note: Covalent Metrology X-ray Diffraction Offcut Measurement

X-ray Reflectometry (XRR)
XRR is a non-contact, non-destructive x-ray characterization technique suitable for both amorphous and crystalline materials. It provides refined...

Scanning Transmission Electron Microscopy (STEM)
STEM is a hybrid electron microscopy technique used for imaging and morphological characterization with atomic-scale resolution. In Covalent's...

Transmission Electron Microscopy (TEM)
TEM is the highest-resolution imaging technique available today. It is used to visualize sample features with atomic-level spatial...

X-ray Computed Tomography (Micro-CT)
X-ray computed tomography (often referred to as Micro-CT due to its spatial resolution) is a non-contact, nondestructive 2D...